Kwong et al 9

We assume that conditional on j the d(i, j) are independent random variables. Let D; = {d(i, j), 1 <
J < M} be the array of distances between X; and all the ¥;. Then
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FIGURE 5 The empirical pdfs f and g and their Gaussian approximations for links A — B, B — C and
C—D.

Relations (2)-(4) constitute the signature distance statistical model. Figure 5 displays the empirical
pdfs and the Gaussian approximations of f and g for the three links. The annotation in the left plot for link
A — B means that uy and 6 are the mean and standard deviation for f; u, and 6, are the mean and standard
deviation for g; ny = 91 and n, = 24,622 are the number of samples used to estimate the statistics for f
and g, respectively. That is, there were 91 matched vehicle pairs and 24,622 unmatched pairs. (There are
invariably many more unmatched pairs.) Section 7 describes how the distributions in Figure 5 are estimated.

The expected performance of the matching function (1) and others can be calculated from the model
(2)-(4), see (12).

5. OPTIMAL CONSTRAINED MATCHING

Minimum distance matching, t,i,p, given in (1) is a form of unconstrained matching. (The match-
ings in (6, 13) are also unconstrained.) Unconstrained matching may violate two constraints. First, a match-
ing may allow duplicates: two different upstream vehicles i; # i, may be matched to the same downstream



